
Lecture 03: Balls & Bins (Birthday Paradox,
Max-Load)
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Balls and Bins Problems

There are m balls and n bins
Each balls is independently thrown into a bin that is chosen
uniformly at random

(T1, . . . ,Tm) be the joint distribution such that Ti represents
the bin into which the i-th ball is thrown
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Expected Number of Collisions I

For 1 6 i < j 6 m, let Xi ,j be the indicator variable for the
event that the i-th ball and the j-th ball fall into the same
variable, i.e., indicator variable for the event Ti = Tj

We are interested in computing the “expectation of the
random variable Xi ,j ”

E
[
Xi ,j

]
= P

[
Xi ,j = 1

]
= P

[
Ti = Tj

]
=

n∑
t=1

P
[
Ti = Tj = t

]
= n · 1/n2 = 1/n
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Expected Number of Collisions II
Let X =

∑
16i<j6m Xi ,j

The random variable X counts the number of collisions that
occur
We are interested in the expected number of collisions

E [X] = E

 ∑
16i<j6m

Xi ,j


=

∑
16i<j6m

E
[
Xi ,j

]
By the Linearity of Expectation

=

(
m
2

)
1
n

Note that for m =
√
2n, we have E [X] = 1

The “average number of collisions” at m =
√
2n is 1, but how

does the probability of this event behave like?
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Birthday Paradox

There are m people in a room. Assume that the birthday of people
are distributed uniformly at random over the 365 days in the year.
What is the number of people m that ensures that two people share
a birthday with probability 0.9?
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Birthday Paradox – Balls and Bins Versions I

We want to find the value of m such that throwing m balls in
n = 365 bins ensures a collision with probability 0.9

Let NoColl6t represent the probability that T1, . . . ,Tt are all
distinct

Note that

P [NoColl6t ] = 1 ·
(
1− 1

n

)
·
(
1− 2

n

)
· · ·
(
1− t − 1

n

)
=

t−1∏
t=0

(
1− t

n

)
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Birthday Paradox – Balls and Bins Versions II

We are interested in finding m such that the probability of
collision is high

Alternately, we are interested in showing the probability of
NoColl6m is small

P [NoColl6m] =
m−1∏
t=1

(
1− t

n

)

6
m−1∏
t=1

exp
(
− t

n

)
= exp

−m−1∑
t=0

t/n


= exp

(
−(m − 1)m/2n

)
Substituting m = c

√
n, for a suitable constant c > 0, ensures

that exp
(
−(m − 1)m/2n

)
6 0.1
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Birthday Paradox – Balls and Bins Versions III

We are interested in finding out m such that we can throw m
balls without getting a collision, with high probability

That is, we are interested in showing that the probability of
NoColl6m is high

P [NoColl6m] =
m−1∏
t=1

(
1− t

n

)
>

m−1∏
t=0

exp

(
− t

n
− t2

n2

)

= exp

−m−1∑
t=0

t/n −
m−1∑
t=0

t2/n2


= exp

(
−m(m − 1)

2n
− m(m − 0.5)(m − 1)

3n2

)
For m = d

√
n, the first term in the exponent dominates and

the second term is o(1)
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Birthday Paradox – Balls and Bins Versions IV

For a constant d > 0 we can ensure that the final probability
term is > 0.9 s

Conclusion: As m increases from d
√
n to c

√
n the probability of

no-collisions transitions from 0.9 to 0.1.

Recommended: Plot the probability of no-collisions for m = 1 to
m = n, for large values of n. How quickly does the probability
transition from “high” to “low” as n increases?
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Number of Empty Bins

Let Xi represent the indicator variable for the i-th bin being
empty, i.e., the indicator of the event: Tj 6= i , for all
i ∈ {1, . . . ,m}
Note that

E [Xi ] = P [Xi = 1] =

(
1− 1

n

)m

Let X =
∑n

t=0 Xi represent the number of empty bins

E [X] = E

 n∑
t=1

Xi

 =
n∑

t=1

E [Xi ] = n

(
1− 1

n

)m

≈ n exp
(
−m/n

)
For m = n, we expect (roughly) n/e empty bins! For
m = n log n, we expect (roughly) 1 empty bin.
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Probability of a Bin containing k Balls

There are

(
m
k

)
ways of choose the balls (indexed by)

1 6 i1 < i2 < · · · < ik 6 m that fall in the bin
The probability that these balls fall into the bin is 1

nk

The probability that other balls fall outside is
(
1− 1

n

)m−k

Let Xi ,=k represent the indicator variable that bin i contains
exactly k balls
Note that, we have

P
[
Xi ,=k

]
=

(
m
k

)
1
nk

(
1− 1

n

)m−k

(1)
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Max Load

Let Li represent the load of the i-th bin, i.e., the number of
balls in the i-th bin
Note that Li is the random variable

∣∣{k : Tk = i}
∣∣

Let M be the maximum load of the bins
That is, M is the random variable max{L1, . . . ,Ln}
We are interested in understanding how E [M] behaves like

Theorem (Max Load)

For m = n, we have

E [M] = Θ

(
log n

log log n

)
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Analysis of Max Load (Upper Bound) I

First, we want to show that M is 6 c log n
log log n with ≈ 1

probability

This will imply that E [M] is upper bounded by (roughly)
c log n

log log n

This is known as the “First Moment Technique”
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Analysis of Max Load (Upper Bound) II

Let Xi ,>k be the indicator variable for bin i getting > k balls
Note that

P
[
Xi ,>k = 1

]
6

(
m
k

)
1
nk

Think: Why is this true?
We will upper bound this probability further

P
[
Xi ,>k = 1

]
6

(
m
k

)
1
nk

6

(
m

n

)k 1
k!

By union bound:

P
[
∃i ∈ [n] : Xi ,>k = 1

]
6

(
m

n

)k n

k!
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Analysis of Max Load (Upper Bound) III

Let k = k∗ = c log n
log log n such that k! > n2 and m = n

We get

P
[
∃i ∈ [n] : Xi ,>k∗ = 1

]
6

1
n

Negating, we get:

P
[
∀i ∈ [n] : Xi ,>k∗ = 0

]
> 1− 1

n

Note that the event “∀i ∈ [n] : Xi ,>k∗ = 0” implies the event
“M < k∗”

So, we have P [M < k∗] > 1− 1
n

This implies that E [M] 6
(
1− 1

n

)
(k∗ − 1) + 1

n · n 6 k∗
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Analysis of Max Load (Lower Bound)

We are interested in showing that

E [M] > d
log n

log log n

There are multiple ways to show this. In particular, we can use
a “Second Moment Technique” to prove this result. One of the
reading materials proves the result using this technique. We
will, instead, use a more general technique that shows a close
connection between the balls-and-bins problem and its
approximation using independent Poisson Distributions
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Rough Probability Calculation

Recall Equation 1. The probability of a bin to have k balls is

P
[
Xi ,=k

]
=

(
m
k

)
1
nk

(
1− 1

n

)m−k

=

(
m
k

) 1

n
(
1− 1

n

)


k (
1− 1

n

)m

≈ 1
k!

(
m

n − 1

)k (
1− 1

n

)m

≈ exp
(
−m/n

)
·
(
m/n

)k
k!
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Poisson Distribution

Let Y be the distribution over the sample space {0, 1, 2, . . . }
such that

P [Y = k] = exp(−µ)
µk

k!

Prove: This is a probability distribution with mean µ
This distribution is the Poisson Distribution with mean µ
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Intuition of the Approximation

Reality: The load distribution of n bins when m balls are
thrown is represented by the joint random variables
(L1, . . . ,Ln)
Approximation: Consider the distribution (Y(1), . . . ,Y(n)),
where each Y(i) is an independent Poisson distribution with
mean m/n

Theorem (Intuitive: Poisson Approximation)

If f is a “well-behaved” function, then

E
[
f (L1, . . . ,Ln)

]
. E

[
f (Y(1), . . . ,Y(n))

]
Example: We want to show that the max-load is > d log n

log log n with
high probability. So, we choose f as the indicator variable for the
event that the maximum of the inputs is < d log n

log log n . Then we

show that the E
[
f (Y(1), . . . ,Y(n))

]
is “small.” So, we have

E
[
f (L1, . . . ,Ln)

]
is also “small.”
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Coupon Collector’s Problem

Think:
How many balls need to be thrown so that every bin has at
least one ball?
How many balls need to be thrown so that every bin has at
least r balls?
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